
FPGA debugging using the MSO-19 © 2008 Link Instruments 1

FPGA debugging using the MSO-19

Link Instruments, Inc.
17A Daniel Rd East, Fairfield, NJ 07004 973-808-8990 fax: 306-3000
Internet: Sales@LinkInstruments.com http://www.LinkInstruments.com

FPGA debugging using the MSO-19 © 2008 Link Instruments 2

The MSO-19 is a very powerful design tool. It is a combination of an Oscilloscope, Logic
Analyzer and Pattern Generator with a simple Windows software interface. The goal of this
exercise is to demonstrate how to streamline the FPGA design process by using the MSO-19.

FPGA based evaluation boards are invaluable tools in the initial stages of product
development. Ideas can be quickly tried out before committing to a PCB layout. Software
simulation can assist in the design process, but if the design involves other ICs that are
connected the FPGA the task becomes more complicated. One of best method to assist in
design is to use an I/O analyzer. What is an I/O analyzer? It is basically a combination of a
Logic Analyzer and a Pattern Generator. A typical FPGA design contains the Input ports,
Output ports, Clocks, IP cores and glue logic to tie them together. When a design fails to work,
the ability to see what is going on inside the FPGA becomes critical. Three of the methods to
debug the design are:
1) FPGA manufactures have IP core based logic analyzers that can be compiled into the

design for debugging purposes. These soft Logic Analyzers are usually costly and
consume valuable resources in a smaller FPGA.

2) By bonding out all of the signals of interest to external I/O pins an external Logic Analyzer
can be used to monitor the signals. This method can be a problem if the design does not
have enough spare I/O pins.

3) Sometimes JTAG ports can be used to monitor internal register states. Unfortunately user
interface software is generally lacking and data update rates are limited.

4) Another method is to write simple debugging code to compact data into serial data streams.
External stimulus can also be applied via this method. This method combines the I/O
savings of the JTAG method and the simplicity of an external Logic Analyzer.

We will be demonstrating method 4 using the MSO-19 Logic Analyzer and Pattern Generator.

For our exercises, we will be using the Lattice MachXO Starter Evaluation board. Our goal is
to create a software loadable timer via a SPI port before we’ve selected a MCU
(microcontroller) for our project. The MachXO starter board contains 9 LEDs, a bank of DIP
switches, a 33.33Mhz oscillator and a slew of bond out pads to test our design. Only 4 pins on
the MSO-19 will be use simulate a simple SPI I/O port.

FPGA debugging using the MSO-19 © 2008 Link Instruments 3

1. First order of business for a hardware
designer is turn on the LED, it’s our way of
saying “Hello World”. The LEDs showed a
pattern of 010101010.

2. Once we have access to output pins, it’s
time to work on the input pins. Let’s wire up
the board so if that the SW2 is pressed the
value of DIP switches are displayed on the
LEDs otherwise the LED will display the
pattern of 010101010.

FPGA debugging using the MSO-19 © 2008 Link Instruments 4

3. Next we’ll connect 4 digital I/O pins from
MSO-19 to the starter board. Create a simple
bypass circuit to send the outputs on the
MSO-19 pins to the LEDs. We’ll also feed
the oscillator clock back to pin 4 of the I/O
pins.

Logic Analyzer channel 3 shows the 33 MHz
clock.

The MSO-19’s pattern generator clock is
independent from the logic analyzer clock. We
can run the LA section at 200MSa/s to see the
33Mhz oscillator while running the PG at
10KSa/S, slow enough to see the LEDs blink.

FPGA debugging using the MSO-19 © 2008 Link Instruments 5

4. It’s time to create an internal shift register
so that we can control the LEDs from the
MSO-19. The easiest format is to follow the
SPI protocol. We’ll create an internal version
of the SCE, SCK and SDI.

All inbound signal edges will be synchronized
to the 33Mhz oscillator.

All the unused signals are AND together into a
dummy statement.

ISCE is the enabler signal for the shift
register, which clocks in the ISDI data using
the rising edge of ISCK. At the end of the
ISCE cycle, we use the rising edge of the
ISCE to transfer the 8 bit data in the shift
register to the LED register.

FPGA debugging using the MSO-19 © 2008 Link Instruments 6

We can generate the necessary SPI control
signals using the SPI generator feature of the
MSO-19’s pattern generator

The PG buffer now contains the data we want
to send to the FPGA

Running the PG and LA allows us to see
result on the LEDs and the LA screen.

5. Next we’ll expand the SPI buffer to 16 bits.
We’ll also wire in SW3 as a selector so we
can examine the content of the upper and
lower byte of the 16 bit register on the LED.
Just like the above example, create two byte
data using the SPI generator in the PG setup
screen. By lengthening the SPI/IN data buffer
we can increase the number of FPGA
registers that we want to control.

FPGA debugging using the MSO-19 © 2008 Link Instruments 7

6. On to the main event, we are going to
create a reloadable 16 bit timer that we can
control via the MSO-19. First create a 16bit
loadable down counter via IPexpress.

Next create a 16 input AND gate to trap the
0x0000 condition. We’ll also create a toggle
div/2 register that operates off the zero detect.
The zero detect signal serves two purposes,
the load signal for the down counter and the
toggle enable for the toggle output.

Create the count of interest using the SPI
generator.

We can see the SDO pin pulsing as the 16 bit
counter resets and reload the SPI count. The
Tout pin also shows a square wave that
toggles at ½ the rate of SDO.

FPGA debugging using the MSO-19 © 2008 Link Instruments 8

But how do you read the registers back from
the FPGA? We can use the same SCE signal
to latch the internal register to a SPI out data
buffer. And clock the data out on SCK via the
SDO pin while we transfer data into the SDI
pin. We will use the falling edge of the SCE
signal. Reading from a SPI port is a little
trickier to do than writing into the SPI port.
We need to detect the falling edge of SCE.
This is accomplished by creating a 2 stage
pipeline, compare the current and previous
state of SCE, once the comparator detects a
H > L transition, it will generate a pulse of one
oscillator clock wide. This signal CEQQ will
be the signal that will use to transfer the data
from internal register to the SDO buffer.

SCK signal will also need an edge detector.
CKQQ is our pulsed clock.

The CKQQ signal combined with the ISCE
signal becomes the enabler signal as the shift
register clocks data out via SDO.

In this example we’ve shown that we can
transfer the Dip Switch settings to the SDO
buffer and clock it out while we clock in the
new timer value. One can confirm this in the
SPI display box.

FPGA debugging using the MSO-19 © 2008 Link Instruments 9

As one can see from the above examples, the I/O analyzer function on the MSO-19 can be a
very power tool in debugging complex FPGA designs. This technique can be expanded to
further control and debug internal FSM and external circuitry attached to the FPGA. With the
MSO-19, one can create a very affordable comprehensive digital lab to explore the flexibility of
FPGA designs.

